
Red Team Capstone
Challenge Network

Azkrath

Write-Up Submission:

Index
1. About me 6

2. The Challenge 7

2.1. Project Goal 7

2.2. Project Scope 7

2.3. Project Registration 8

2.4. Project Tools 8

3. Preparation 9

4. OSINT 10

4.1. http://web.thereserve.loc 10

4.2. http://vpn.thereserve.loc 15

4.3. http://mail.thereserve.loc 17

5. Perimeter Breach 19

6. Initial Compromise of Active Directory 28

6.1. Domain Escalation 32

7. Full Compromise of CORP Domain 35

8. Full Compromise of Parent Domain 42

9. Full Compromise of BANK Domain 48

10. Compromise of SWIFT and Payment Transfer 53

10.1. Goal execution 61

11. Conclusions 67

11.1. Attack Path 67

Index of figures
Figure 1 - Initial network map 9

Figure 2 - Updating /etc/hosts 9

Figure 3 - E-Citizen Portal 9

Figure 4 - Initial page on the Web application 10

Figure 5 – Meet the Team 11

Figure 6 - Client source code inspection 11

Figure 7 – Names of users as image name 12

Figure 8 - Request to ChatGPT to generate a combo list of passwords 13

Figure 9 - Technologies used in the Web Server 13

Figure 10 - info.php at web.thereserve.loc 14

Figure 11 - Template .ovpn file 15

Figure 12 - Remote address not defined 15

Figure 13 - Subject CN defined as temp4 15

Figure 14 - Server error: 403 Forbidden 16

Figure 15 - Default IIS page 16

Figure 16 - Identified Technologies, including RoundCube 17

Figure 17 - Login page of RoundCube Webmail Application 17

Figure 18 - Port and Service scan using nmap (web.thereserve.loc) 18

Figure 19 - Port and Service scan using nmap (vpn.thereserve.loc) 18

Figure 20 - Port and Service scan using nmap (mail.thereserve.loc) 19

Figure 21 - Accounts compromised 20

Figure 22 - Webmail access 20

Figure 23 - Soft connection reset 21

Figure 24 - Two new routes lead to new machines (10.200.x.21 and 10.200.x.22) 21

Figure 25 - New entries in hosts file 21

Figure 26 - Nmap scan of WRK1 22

Figure 27 - Nmap scan of WRK2 22

Figure 28 – Detectable RDP enabled hosts on the network 23

Figure 29 - Detectable HTTP enabled hosts on the network 23

Figure 30 - Website at 10.200.XXX.201 24

Figure 31 - Static links point to the swift.bank.thereserve.loc domain 24

Figure 32 - Swift Bank application 25

Figure 33 - Nmap scan of the swift.bank.thereserve.loc web application 25

Figure 34 - Login on WRK1 through Remote Desktop 26

Figure 35 - Perimeter Breached 27

Figure 36 - Netcat executable inside the Downloads folder 27

Figure 37 - FULLSYNC task that runs from C:\SYNC\sync.bat 28

Figure 38 - FULLSYNC scheduled task runs every 5 minutes 28

Figure 39 - Full access on the sync.bat file 29

Figure 40 - Setup a listener on port 444 29

Figure 41 - Editing the sync.bat file 29

Figure 42 - Reverse shell with administrative privileges 30

Figure 43 - Command to create an exclusion on the Downloads folder 31

Figure 44 - Creating a new share folder to exfiltrate information 31

Figure 45 - Share enabled 31

Figure 46 - All Kerberoastable accounts 32

Figure 47 – Using Rubeus to perform Kerberoast 32

Figure 48 - Password of user svcScanning cracked 33

Figure 49 - User svcScanning groups 33

Figure 50 - Network Map after Server1 and Server2 compromises 34

Figure 51 - SERVER1 and CORPDC Enumeration 34

Figure 52 - Using the Unconstrained option with Get-NetComputer from PowerView 34

Figure 53 - Coerce the CORPDC to authenticate to Server1 35

Figure 54 - Write ticket to be imported in mimikatz 36

Figure 55 - Import ticket into mimikatz 36

Figure 56 - Dumping the NTLM hash of the Administrator to use with Pass-The-Hash 36

Figure 57 - Using Pass-The-Hash to invoke a shell with the Administrator 37

Figure 58 - Make sure that we have access to CORPDC 37

Figure 59 - PsExec to execute cmd as Administrator@CORPDC 38

Figure 60 - Enable restricted admin with PowerShell 38

Figure 61 - Invoke Remote Desktop using Pass-The-Hash as a restricted admin 38

Figure 62 - Logged in successfully in CORPDC as Administrator 39

Figure 63 - Network Map after CORPDC compromise 40

Figure 64 - List of Domain Trust information 40

Figure 65 - Disabling AV and importing PowerView 41

Figure 66 - Enterprise Admins SID 41

Figure 67 - Child Domain Controller (CORPDC) SID 42

Figure 68 - Dump of the krbtgt NTLM hash 42

Figure 69 - Creating a Golden Ticket 42

Figure 70 - Testing the access to the ROOTDC 43

Figure 71 - PowerShell session in ROOTDC 43

Figure 72 - Adding a new user as an Enterprise Admin 44

Figure 73 - Logged in in the ROOTDC as EA 44

Figure 74 – Network Map after full compromise of the ROOTDC 46

Figure 75 - Remote Desktop at BANKDC 46

Figure 76 - Creating user at BANK Forest 47

Figure 77 - Access at WORK1 machine 48

Figure 78 - Access at WORK2 machine 48

Figure 79 - Access at JMP machine 49

Figure 80 - Network Map as Full Enterprise Admin 50

Figure 81 - BANK Approvers and Capturers 50

Figure 82 - Dump NTLM hashes of Capturers 51

Figure 83 - Password of c.young cracked 51

Figure 84 - C.Young profile in WORK2 51

Figure 85 - JMP machine user profiles 52

Figure 86 - Note for the approver 52

Figure 87 - Reset the a.holt user's password 53

Figure 88 - Access to the JMP machine as a.holt 53

Figure 89 – Saved browser credentials after login 54

Figure 90 - Dashboard of the Approver 54

Figure 91 – Access to WORK1 machine as c.young 55

Figure 92 - No stored credentials 55

Figure 93 - Dashboard of the Capturer (C.Young) 56

Figure 94 - Note for the capturer 56

Figure 95 – Log In with your account 57

Figure 96 – Transfer according to e-citizen parameters 58

Figure 97 – Check your email for the PIN 58

Figure 98 – Confirm your transaction with PIN number 59

Figure 99 – Transaction Confirmed 59

Figure 100 – Forward the transaction 60

Figure 101 – Confirming the forward 60

Figure 102 – Approve the transaction 61

Figure 103 – Confirm the approval 61

Figure 104 - Full Network Compromise 62

1. About me

TryHackMe Username: azkrath

Linkedin: https://www.linkedin.com/in/f%C3%A1bio-m-75308594/

Bio: Currently an application security engineer and penetration tester, I’ve been working in Cyber

Security for the past 4 years. I have been working in IT for over 18 years now and have worked in several

different fields of IT (IT Technician, Technical Support Operator, Product Support Engineer, Consultant,

Software Engineer and Architect, Security Analyst, Pentester/Lead Pentester). Love hacking, computers

and all things technology related.

2. The Challenge
The Red Team Capstone Challenge is an in-depth network challenge simulating a Red Teaming

engagement. The challenge includes several phases that will require you to enumerate a perimeter,

breach the organization, perform lateral movement and, finally, perform goal execution to show impact,

by performing a fraudulent transaction. To best simulate how these engagements usually occur, there

are multiple paths that can be used to achieve the final goal.

This is my write-up of the challenge, following a specific path in order to compromise the infrastructure

and achieve goal execution.

2.1. Project Goal
The purpose of this assessment is to evaluate whether it is possible to compromise the corporate

division and, if so, determine if that allows the compromise of the bank division.

In order to perform the fraudulent transaction, two test banking accounts will be supplied, in order to

demonstrate if it is possible to transfer funds between these two accounts, by gaining access to SWIFT,

the core backend banking system in place.

The Swift backend exposes an internal web application at http://swift.bank.thereserve.loc, which can be

used to perform the transactions. To transfer funds, the following flow is provided:

● A customer makes a request that funds should be transferred and receives a transfer code.

● The customer contacts the bank and provides this transfer code.

● An employee with the capturer role authenticates to the SWIFT application and captures the

transfer.

● An employee with the approver role reviews the transfer details and, if verified, approves the

transfer. This must be performed from a jump host.

● Once approval for the transfer is received by the SWIFT network, the transfer is facilitated, and

the customer is notified.

2.2. Project Scope
In-Scope

● Security testing of TheReserve's internal and external networks, including all IP ranges accessible

through your VPN connection.

● OSINTing of TheReserve's corporate website, which is exposed on the external network of

TheReserve. Note, this means that all OSINT activities should be limited to the provided network

subnet and no external internet OSINTing is required.

● Phishing of any of the employees of TheReserve.

● Attacking the mailboxes of TheReserve employees on the WebMail host (.11).

● Using any attack methods to complete the goal of performing the transaction between the

provided accounts.

https://tryhackme.com/room/redteamcapstonechallenge
http://swift.bank.thereserve.loc

Out-of-Scope

● Security testing of any sites not hosted on the network.

● Security testing of the TryHackMe VPN (.250) and scoring servers or attempts to attack any other

user connected to the network.

● Any security testing on the WebMail server (.11) that alters the mail server configuration or its

underlying infrastructure.

● Attacking the mailboxes of other red teamers on the WebMail portal (.11).

● External (internet) OSINT gathering.

● Attacking any hosts outside of the provided subnet range. Once you have completed the

questions below, your subnet will be displayed in the network diagram. This 10.200.X.0/24

network is the only in-scope network for this challenge.

● Conducting DoS attacks or any attack that renders the network inoperable for other users.

2.3. Project Registration
All red teamers participating in the challenge must register to allow their single point of contact for the

engagement to track activities. An email account for communication with the system will also be

provided.

To register, you will need to SSH into the e-citizen platform, located at 10.200.XXX.250, where XXX is your

assigned subnet at the beginning of the room.

Once you authenticate, you will be able to communicate with the e-Citizen system. Follow the prompts

to register for the challenge and save the information you get for future reference. Once registered,

follow the instructions to verify that you have access to all the relevant systems.

The VPN server and the e-Citizen platform are not in scope for this assessment, and any security testing

of these systems may lead to a ban from the challenge.

As you make your way through the network, you will need to prove your compromises. In order to do

that, you will be requested to perform specific steps on the host that you have compromised. Please

note the hostnames in the network diagram above, as you will need this information. Flags can only be

accessed from matching hosts, so even if you have higher access, you will need to lower your access to

the specific host required to submit the flag.

2.4. Project Tools
Several tools are provided that might be useful for the exercise. My take on this challenge was to try to

only use the assigned tools or living-of-the-land tools and techniques when possible, minimizing the

necessity of external tools like metasploit, msfvenom and other frameworks.

A list of Password policies, a password base list and the restriction of special characters were also

provided in the challenge.

3. Preparation

Figure 1 - Initial network map

After reading the Project Brief and Answering the questions, we are presented with the initial network

map, showing us 3 different machines.

We start by adding the IP addresses in our hosts file, so that we can resolve hostnames even if we

change subnets (if the subnet changes, for whatever reason, we can just update the hosts file with the

new subnet assigned):

Figure 2 - Updating /etc/hosts

Downloading the Capstone Challenge resources, we get two files regarding password policies in use and

a base list of passwords. We also get a list of common tools to use against the challenge. These resources

might come in handy later in the challenge.

Afterwards, we set up our process at the e-citizen communication portal, using the provided SSH details,

and registered our account. This portal will be used to prove the compromises by performing specific

steps on the hosts compromised.

Figure 3 - E-Citizen Portal

4. OSINT

4.1. http://web.thereserve.loc
OSINT, short for Open-Source Intelligence, is a process designed to gather information from public

sources and can be performed on a technical form (technologies, versions, etc) and a human form

(number of employees, email schema, account name structure, etc). This process is usually incorporated

in Passive Reconnaissance and allows us to gather information about our target.

Since the scope indicates that OSINT can only be performed on the corporate website, it might be a good

place to start our enumeration process.

We start by checking the three servers identified, and perform some enumeration on the web server:

Figure 4 - Initial page on the Web application

We notice that there is a navigator menu on the top with the tabs “Overview”, “Meet the Team” and

“ContactUs”. Since we are gathering information, the “Meet the Team” page might give us some useful

information regarding the employees of the organization, the team’s structure, roles, and email

addresses:

Figure 5 – Meet the Team

By performing client source code inspection on the images, we can see that we have a path for the team

images, and the images identify the user’s name:

Figure 6 - Client source code inspection

By accessing the path identified (/october/themes/demo/assets/images/) we can see that a vulnerability

of directory listing exists, allowing us to get all the names associated with images.

Figure 7 – Names of users as image name

One of the risks associated with this image naming is that there is a strong chance that those names are

using the same nomenclature as their corporate email addresses. By looking at the “ContactUs” page, we

can see that we can send our CV and other type of documents to applications@corp.thereserve.loc

address. This information disclosures the domain used in corporate emails, which allows us to compile a

potential list of usernames:

● antony.ross@corp.thereserve.loc

● ashley.chan@corp.thereserve.loc

● brenda.henderson@corp.thereserve.loc

● charlene.thomas@corp.thereserve.loc

● christopher.smith@corp.thereserve.loc

● emily.harvey@corp.thereserve.loc

● keith.allen@corp.thereserve.loc

● laura.wood@corp.thereserve.loc

● leslie.morley@corp.thereserve.loc

● lynda.gordon@corp.thereserve.loc

● martin.savage@corp.thereserve.loc

● mohammad.ahmed@corp.thereserve.loc

● paula.bailey@corp.thereserve.loc

● rhys.parsons@corp.thereserve.loc

● roy.sims@corp.thereserve.loc

Since we also have the password policy and base list, we can start to compile a potential list of

passwords to use against some service or authentication form, later on. Although it is possible to use

several tools to perform this operation (like crunch), we can just ask ChatGPT to generate a list of

passwords by using the password base list and adding a rule including the password policy. Since we are

trying to simplify the process, we can use the following prompt:

mailto:applications@corp.thereserve.loc
mailto:antony.ross@corp.thereserve.loc
mailto:ashley.chan@corp.thereserve.loc
mailto:brenda.henderson@corp.thereserve.loc
mailto:charlene.thomas@corp.thereserve.loc
mailto:christopher.smith@corp.thereserve.loc
mailto:emily.harvey@corp.thereserve.loc
mailto:keith.allen@corp.thereserve.loc
mailto:laura.wood@corp.thereserve.loc
mailto:leslie.morley@corp.thereserve.loc
mailto:lynda.gordon@corp.thereserve.loc
mailto:martin.savage@corp.thereserve.loc
mailto:mohammad.ahmed@corp.thereserve.loc
mailto:paula.bailey@corp.thereserve.loc
mailto:rhys.parsons@corp.thereserve.loc
mailto:roy.sims@corp.thereserve.loc

Figure 8 - Request to ChatGPT to generate a combo list of passwords

With this prompt we manage to generate about 660 different passwords that we might use later in a

Brute Force, Password Spray or Credential Stuffing attack.

Using a plugin for the browser called Wappalyzer, we can check on the technologies used by the server,

including their versions (if available):

Figure 9 - Technologies used in the Web Server

This information can be useful in order to check for exploits or known vulnerabilities for the technologies

and their versions, which might help us achieve a compromise of the server. Although this information

can be manually obtained from HTTP headers, Source Code inspection or URL paths, the plugin allows us

to get that information way faster, which is important in an engagement.

While navigating through the website, we also manage to identify the info.php, located at

http://web.thereserve.loc/info.php, which can provide us with more information regarding the

technologies in use, internal directories, and configurations:

Figure 10 - info.php at web.thereserve.loc

http://web.thereserve.loc/info.php

4.2. http://vpn.thereserve.loc
Accessing the VPN server, a login page is presented, which requires an internal (corporate) account. This

might be a good location to try to brute force our way in. By testing different endpoints, we manage to

find /vpn and /vpns, where the first one provides us with a .ovpn template file:

Figure 11 - Template .ovpn file

By looking into the file, we can see two relevant fields, the remote, which has a 10.200.X.X IP address

and the Subject CN, which usually identifies the user which the certificate is assigned to, with a value of

“temp4”.

Figure 12 - Remote address not defined

Figure 13 - Subject CN defined as temp4

This means that the file might not be useful to connect to an internal network without modifications, like

defining the remote IP correctly and adding the username to the CN field.

4.3. http://mail.thereserve.loc
Accessing the hostname defined for the mail page, we get a server error with an HTTP Status Code 403 –

Forbidden:

Figure 14 - Server error: 403 Forbidden

However, checking the IP address, we get a default IIS page, which means that we might need the correct

path in order to access the email application:

Figure 15 - Default IIS page

By checking the related technologies of the webpage, we manage to identify that the web server is using

the RoundCube webmail server software, which is Open Source. By searching for the application, we can

find the GitHub repository at https://github.com/roundcube/roundcubemail. The Wappalyzer also

identifies other technologies in use:

https://github.com/roundcube/roundcubemail

Figure 16 - Identified Technologies, including RoundCube

As we can see, the server is not only using RoundCube, but it is also using PHP. Looking into the GitHub

repository, it is possible to identify that there is a main index.php page, which redirects us to the default

login application page, which might give us another target for a brute force attack:

Figure 17 - Login page of RoundCube Webmail Application

5. Perimeter Breach
So far, we have gathered a lot of useful information from our OSINT research, by passive means or just

browsing normally. Alongside the identified technologies and versions, we manage to compile a list of

potential usernames and passwords. Now we need to identify a point of failure and get inside the

perimeter.

We start by doing some active enumeration of the 3 servers, using the NMAP scanner:

Figure 18 - Port and Service scan using nmap (web.thereserve.loc)

Figure 19 - Port and Service scan using nmap (vpn.thereserve.loc)

We use the flags -sC (running default scripts) and -sV (performing version detection, as well as -Pn

(disable host discovery, or also known as ping scanning, considering the hosts alive).

As we can see from the first 2 results, we only have the HTTP and SSH ports available. For now, we are

not going to try to perform a brute force attack on SSH, so let’s scan the third host.

Figure 20 - Port and Service scan using nmap (mail.thereserve.loc)

On the mail server, we have a lot of open ports and services. Although we have several interesting

services available, let’s set up a brute force attempt at the SMPT service with Hydra, while looking for

exploits for MySQL 8.0.31 (since according to Snyk database, there should be around 39 CVEs associated

with versions <8.0.33 and <8.0.32). The following command was used:

After a couple of minutes, Hydra finishes the brute force attempt and returns two user accounts with

their respective password:

Figure 21 - Accounts compromised

With these accounts, we can now try to login into the webmail application, the VPN server (in order to

get a VPN file assigned to the users) and if we are lucky, we might ever have Active Directory credentials

in our hand. So, ignoring the potential MySQL vulnerabilities and checking the webmail, it is possible to

login on both accounts. However, nothing useful is found in the mailboxes:

Figure 22 - Webmail access

With the webmail access, potential phishing attacks might be possible to perform against the other user

accounts (since it is in scope, we might as well test it). So, we can craft a phishing email, with an

executable payload, and send it to several emails.

After a couple of minutes, we receive several replies, but the payload doesn’t work. We might need a

little bit of work in order to phish the employees or bypass Anti-Virus protection.

Looking into the VPN server, we manage to login and retrieve two .ovpn files. Looking into the files, we

can see that the VPN server is defined in the remote field, and the user is defined in the Subject CN. We

modify the remote field to the hostname vpn.thereserve.loc, allowing us to control the host through our

entry in the hosts file (and preventing us from having to download the files again if, for some reason, we

change subnets).

Trying to connect with the .ovpn file from the user laura.wood, we get a connection-reset and a restart:

Figure 23 - Soft connection reset

This might imply that someone else is using the connection, as usually happens in a realistic

engagement, since users might be using the connection during the working day for remote work. Luckily,

the mohammad.ahmed connection seems to work just fine and after connecting, we check out network

configuration and routes:

Figure 24 - Two new routes lead to new machines (10.200.x.21 and 10.200.x.22)

Another potential vulnerability identified in the VPN server is that the user field can be modified, which

allows us to request a VPN file for any user. It might be worth it if for some reason someone else decides

to use the mohammad.ahmed user’s connection file as well.

Let’s add the 2 machines to our hosts files, under wrk1.corp.thereserv.loc and wrk2.corp.thereserve.loc

host names, and start Nmap scans against both machines (since they are not responding to ICMP

requests, we need to make sure that our scans use the -Pn flag, to skip host discovery and consider it

alive/online).

Figure 25 - New entries in hosts file

Figure 26 - Nmap scan of WRK1

Figure 27 - Nmap scan of WRK2

One interesting fact is that both machines have Remote Desktop Protocol (RDP, port 3389) open, so we

might be able to login with these credentials if they are the same as their Active Directory accounts.

Let’s see if we can find other RDP enabled hosts on the network, using NMAP with the following

command nmap -p3389 -Pn 10.200.XXX.1-254 –open where XXX is our subnet:

Figure 28 – Detectable RDP enabled hosts on the network

Let’s see if we can also find HTTP enabled hosts on the network, using NMAP with the following

command nmap -p80,443 -Pn 10.200.XXX.1-254 –open where XXX is our subnet:

Figure 29 - Detectable HTTP enabled hosts on the network

After the scan, we can see that a 4th machine has a port 80 and 443 exposed, serving an HTTP/HTTPS

web page. Using the IP in the browser, the web page displays a white background, without any

visualization or errors:

Figure 30 - Website at 10.200.XXX.201

Checking the source code, we can see that it is the address of the Swift Bank web application, through

the static links in the JavaScript code:

Figure 31 - Static links point to the swift.bank.thereserve.loc domain

After adding the hostname to the hosts file, we are now able to access the web application for the Swift

Bank:

Figure 32 - Swift Bank application

We can also run an Nmap scan against the application, to see what ports and services might be open:

Figure 33 - Nmap scan of the swift.bank.thereserve.loc web application

It doesn’t appear that we can do anything with the application, for now, since we only have port 22, 80

and 443 available.

Regarding the WRK machines, we can confirm that we are able to login with these credentials in both,

breaching the perimeter successfully:

Figure 34 - Login on WRK1 through Remote Desktop

NOTE: We are now able to obtain the following flags, by following the instructions in the e-citizen

platform:

● Flag 1, Breaching the Perimeter

● Flag 2, Breaching Active Directory

● Flag 3, Foothold on Corporate Division Tier 2 Infrastructure

● Flag4, Access to SWIFT application

6. Initial Compromise of Active Directory

Figure 35 - Perimeter Breached

Since we have both machines available, we might just choose one to advance inside the network. As

soon as we login in the WRK2 machine, we start by looking into the user profile and what might be

available to escalate privileges inside the machine. We notice that there is a netcat executable inside the

Downloads folder:

Figure 36 - Netcat executable inside the Downloads folder

If we manage to find some service or application that is running in the machine with administrator or

system privileges, we might be able to execute netcat with administrative privileges, gaining an elevated

administrative shell.

One quick way of escalating privileges inside a machine is through a misconfigured scheduled task,

especially when it is using a binary or batch file that we can modify.

By using the command schtasks /query /fo csv /v | findstr “SYSTEM > tasks.csv”,we are able to forward a

list of several tasks, to a CSV file, that run with administrative privileges (the /fo csv will print the text in a

CSV format).

Based on the output, most of the tasks run from the Windows directory, which normally means that

those tasks are well configured. A quick search into the CSV reveals that a certain task runs from the

following file (C:\SYNC\sync.bat):

Figure 37 - FULLSYNC task that runs from C:\SYNC\sync.bat

We can also query for the taskname, in order to get more information regarding the schedule task:

Figure 38 - FULLSYNC scheduled task runs every 5 minutes

We can check the permissions of the file with the command icacls C:\SYNC\sync.bat and are able to

confirm that our user has (F) Full Access to the file:

Figure 39 - Full access on the sync.bat file

With this information, we know that we can set up a listener with the previously found netcat

executable, and edit the task to connect with the same executable with administrative privileges,

receiving an elevated reverse shell:

Figure 40 - Setup a listener on port 444

Figure 41 - Editing the sync.bat file

And after a couple of minutes (5 at most) we should receive our administrative reverse shell. However,

we can just execute the task with the following command schtasks /run /tn FULLSYNC, forcing a reverse

shell:

Figure 42 - Reverse shell with administrative privileges

NOTE: We are now able to obtain the following flags, by following the instructions in the e-citizen

platform:

● Flag 4, Administrative access to Corporate Division Tier 2 Infrastructure

6.1.Domain Escalation
We are now local administrators of the machine, but in order to be able to fully compromise the Active

Directory, we need a Domain Administrator account.

Since the Windows Defender is enabled in the machine, we need to be able to whitelist our malicious

applications. In order to maintain the difficulty to other potential players in the network, let’s add an

exclusion folder instead of disabling the Windows Defender, with the following command:

Figure 43 - Command to create an exclusion on the Downloads folder

Also, in a real engagement, it might raise a lot more flags if we disabled an Antivirus instead of just

adding an exclusion folder.

After defining the exclusion folder, we can copy a couple of tools to start doing some Active Directory

Enumeration and Exploitation. We start by running mimikatz and dumping hashes, secrets and lsass. We

manage to get the Password for the Adrian account, but it doesn’t appear to be useful.

After that, we manage to run SharpHound and retrieve information to map the Active Directory in

Bloodhound. In order to exfiltrate the information from the machine, we created a share folder pointing

to the Downloads directory, by issuing the following command:

Figure 44 - Creating a new share folder to exfiltrate information

Finally, we can access the folder through smbclient and retrieve data from our tools:

Figure 45 - Share enabled

After loading the data in the Bloodhound database, we can perform some queries in order to find the

best attack path available. Let’s start by checking Kerberoastable accounts:

Figure 46 - All Kerberoastable accounts

A Kerberoasting attack is an attack that attempts to obtain a password hash of an Active Directory

account that has a Service Principal Name, or SPN. This attack requires an authenticated domain user to

request a Kerberos service ticket from a Ticket Granting Service (TGS). That ticket is encrypted with the

hash of the service account, which we can try to brute force using hashcat, after capturing the TGS ticket.

The main advantage of this attack is that we do not require a privileged user to require a TGS, since any

Domain user account can be used to request service tickets from the TGS.

As we can see, we have 5 potential kerberoastable accounts, which we will try to get the corresponding

hashes and brute force them. Using Rubeus, we manage to easily capture the 5 corresponding hashes of

the SPN accounts:

Figure 47 – Using Rubeus to perform Kerberoast

After capturing the hashes, we use hashcat to crack the hashes and after a while, we manage to get the

svcScanning password:

Figure 48 - Password of user svcScanning cracked

With this account, we can now login into SERVER1 and SERVER2 and by checking the user groups, we can

see that it is part of Local Administration groups:

Figure 49 - User svcScanning groups

NOTE: We are now able to obtain the following flags, by following the instructions in the e-citizen

platform:

● Flag 5, Foothold on Corporate Division Tier 1 Infrastructure

● Flag 6, Administrative access to Corporate Division Tier 1 Infrastructure

7. Full Compromise of CORP Domain

Figure 50 - Network Map after Server1 and Server2 compromises

As we want to accelerate things regarding Domain compromise, we start by disabling the Antivirus

altogether, using the following command Set-MpPreference -DisableRealtimeMonitoring $true and

upload a couple of known tools.

We start by enumerating Active Directory users, groups and computers. During this process, it is

identified that the SERVER1 and CORPDC machines have the flag TRUSTED_FOR_DELEGATION enabled:

Figure 51 - SERVER1 and CORPDC Enumeration

Figure 52 - Using the Unconstrained option with Get-NetComputer from PowerView

Kerberos delegation allows a user or a computer to impersonate another account in order to access

resources and can have several practical applications. Lucky for us, several attacks can be made when

unconstrained delegation is configured.

For a computer to authenticate on behalf of other services, it needs the flag TRUSTED_FOR_DELEGATION

enabled. When this configuration is enabled, and the server receives a TGS, a copy of the user’s TGT is

also placed in memory of the server. This allows us to retrieve the TGT from the LSASS and impersonate

the user without limitation.

To exploit this misconfiguration, we would need to get a way to social engineer a Domain Admin to

authenticate against a service on Server1, or to force the CORPDC server to authenticate against it.

There is a known “Printer Bug” that allows any domain member of “Authenticated Users” to force any

machine running the Spooler service to authenticate to a target via NTLM or Kerberos. This attack was

previously reported to Microsoft, which indicated that this might be fixed in a future version of

Windows. By using a well-known Proof of Concept executable called SpoolSample (can be found at

https://github.com/leechristensen/SpoolSample), we will be able to coerce the CORPDC to authenticate

against Server1, putting the Machine Account TGT in memory, allowing us to dcsync and dump the

Administrator NTLM hash in order to compromise the CORPDC machine.

So, after deploying the executable in our Downloads folder, we set up a monitoring with Rubeus, in order

to capture the TGT, and force the CORPDC to authenticate against Server1:

Figure 53 - Coerce the CORPDC to authenticate to Server1

As soon as the Ticket Granting Ticket (TGT) is captured, Rubeus will warn that a new TGT was found. The

ticket is usually in base64, which means that in order to import it to mimikatz, we’ll need to convert it to

a .kirbi file. We can do it with the following code:

https://github.com/leechristensen/SpoolSample

After executing the following code, a corpdc.kirbi file will be saved in the chosen directory:

Figure 54 - Write ticket to be imported in mimikatz

After this, we just need to load the ticket in mimikatz, using kerberos::ptt:

Figure 55 - Import ticket into mimikatz

Finally, we can use lsadump::dcsync to dump the Administrator NTLM hash:

Figure 56 - Dumping the NTLM hash of the Administrator to use with Pass-The-Hash

Now we can just spawn a shell using pass-the-hash, with the Administrator account:

Figure 57 - Using Pass-The-Hash to invoke a shell with the Administrator

We can check that we do have permissions on the CORPDC server, by checking the C$ share:

Figure 58 - Make sure that we have access to CORPDC

We can also run a command prompt in the server, using Psexec:

Figure 59 - PsExec to execute cmd as Administrator@CORPDC

If we need to RDP to the server using pass-the-hash with the default client, we are able to do it if the

server allows Restricted Admin login. However, it appears that in CORPDC it is not enabled, so we need

to activate it through the registry, by modifying the key “HKLM:\System\CurrentControlSet\Control\Lsa”

through PowerShell:

Figure 60 - Enable restricted admin with PowerShell

After that, with Pass-The-Hash, we should be able to run the RDP client with Administrator privileges:

Figure 61 - Invoke Remote Desktop using Pass-The-Hash as a restricted admin

And login successfully on CORPDC as Administrator and a Domain Admin:

Figure 62 - Logged in successfully in CORPDC as Administrator

NOTE: We are now able to obtain the following flags, by following the instructions in the e-citizen

platform:

● Flag 7, Foothold on Corporate Division Tier 0 Infrastructure

● Flag 8, Administrative access to Corporate Division Tier 0 Infrastructure

8. Full Compromise of Parent Domain

Figure 63 - Network Map after CORPDC compromise

Looking into our Network topology, we can see that we have a Forest composed of two domain trees

(CORP and BANK) and a Parent Domain (ROOT). Starting with some enumeration, we can see that we

have a bidirectional trust between CORP and ROOT:

Figure 64 - List of Domain Trust information

In these situations, we might take advantage of the same Print Bug to coerce the ROOTDC to

authenticate against CORPDC. However, there is an easier way of taking advantage of this Domain Trust if

we have Domain Admin rights in the child Domain (which we do).

KRBTGT is the account used for Microsoft’s implementation of Kerberos. Its name is derived from

Kerberos (KRB) and Ticket Granting Ticket (TGT) and acts as the service account for the Kerberos

Distribution Center (KDC) service, which handles all Kerberos ticket requests.

The KRBTGT is responsible for the encryption of all Kerberos tickets in the domain and its password is

shared across all domain controllers, so that they can verify the authenticity of the received TGT when a

resource access is requested.

A Golden Ticket attack is a way of creating a forged TGT with a stolen KDC key, which enables us to gain

access to any service on the domain, essentially becoming our own Ticket Granting Server (TGS).

In order to perform a Golden Ticket attack, we will need the following information:

● The Full Qualified Domain Name (FQDN) of the Domain

● The Security Identified (SID) of the Domain

● The username of the account that we want to impersonate

● The KRBTGT password hash

This allows us to forge Golden Tickets and access any resource in the CORP domain. However, we need to

be able to forge an Inter-Realm TGT in order to become Enterprise Admins (EA) and access any resource

in the ROOT domain. We need to exploit the trust between the parent domain and the child domain by

adding the SID of the Enterprise Admins (EA) group as an extra SID to our forged ticket, allowing us to

have Administrative privileges over the entire forest.

So, we also need the following information in order to craft our Golden Ticket:

● The SID of the child Domain Controller (CORPDC)

● The SID of the Enterprise Admins (EA) from the parent domain (ROOTDC)

Getting the Security Identifiers is easy, with the PowerView module. So, let’s start by disabling the

Antivirus and importing the PowerView module:

Figure 65 - Disabling AV and importing PowerView

And get the SIDs needed, from the Enterprise Admins group and the child Domain Controller:

Figure 66 - Enterprise Admins SID

Figure 67 - Child Domain Controller (CORPDC) SID

Now, we need to dump the KRBTGT NTLM hash with mimikatz, through DCSYNC:

Figure 68 - Dump of the krbtgt NTLM hash

And now, with all the required information, we can create our own Golden Ticket, which will be injected

in the current session:

Figure 69 - Creating a Golden Ticket

We can now verify that the ticket works, by validating the access to ROOTDC through network path:

Figure 70 - Testing the access to the ROOTDC

We can also issue a command prompt in the ROOTDC through PSEXEC:

Figure 71 - PowerShell session in ROOTDC

Now, in order to maintain persistence, and allowing us to login without creating tickets, we can create a

new user and add it to Enterprise Admins group, using the following PowerShell code:

Figure 72 - Adding a new user as an Enterprise Admin

With our new created user, we can just login in the ROOTDC as an Enterprise Admin:

Figure 73 - Logged in in the ROOTDC as EA

Using the same code, we can also create a user at CORPDC as a Domain Admin, allowing us to login with

both accounts in different domains:

● Thereserve\<user> (Enterprise Admin)

● Corp.thereserve.loc\<user> (Domain Admin)

NOTE: We are now able to obtain the following flags, by following the instructions in the e-citizen

platform:

● Flag 15, Foothold on Parent Domain

● Flag 16, Administrative access to Parent Domain

9. Full Compromise of BANK Domain

Figure 74 – Network Map after full compromise of the ROOTDC

Now that we are Enterprise Admins, the compromise of the other child domain should be easy. We can

start by connecting through RDP into the BANKDC from ROOTDC, with our newly created user:

Figure 75 - Remote Desktop at BANKDC

Now, we can repeat the process of creating a user in the BANK domain, as a Domain Admin, using the

previous code:

So let’s create the new user:

Figure 76 - Creating user at BANK Forest

With our BANK account, we can access all the resources as a Domain Admin, as we can see below:

Figure 77 - Access at WORK1 machine

Using the network path is easier for authentication and accessing the file system:

Figure 78 - Access at WORK2 machine

Figure 79 - Access at JMP machine

In this case, it is possible to create all the files needed to obtain the flags from the e-citizen system, and a

Domain Admin.

NOTE: We are now able to obtain the following flags, by following the instructions in the e-citizen

platform:

● Flag 9, Foothold on Bank Division Tier 2 Infrastructure

● Flag 10, Administrative access to Bank Division Tier 2 Infrastructure

● Flag 11, Foothold on Bank Division Tier 1 Infrastructure

● Flag 12, Administrative access to Bank Division Tier 1 Infrastructure

● Flag 13, Foothold on Bank Division Tier 0 Infrastructure

● Flag 14, Administrative access to Bank Division Tier 0 Infrastructure

10. Compromise of SWIFT and Payment Transfer

Figure 80 - Network Map as Full Enterprise Admin

Now that we are in control of the Full Domain as Enterprise and Domain admin, we need to compromise

the SWIFT and perform a payment transfer. Remember that we manage to identify the Swift Bank

application in the beginning of the challenge, and we might access it at http://swift.bank.thereserve.loc.

We start by enumerating the users with the Capturer and Approver Role in the Bank Domain (we can just

use the Active Directory Users and Computers snap-in):

Figure 81 - BANK Approvers and Capturers

http://swift.bank.thereserve.loc

Since we probably might need to access their workstations, we can try to crack some of the users NTLM

hashes, by dumping them with mimikatz with DCSYNC:

Figure 82 - Dump NTLM hashes of Capturers

We can confirm that we are able to crack the NTLM hash of the c.young user, using hashcat (the rest

might not be possible with rockyou.txt or our pre-generated list):

Figure 83 - Password of c.young cracked

Next, using the network path, we can find the user profile of c.young in the WORK2 machine:

Figure 84 - c.young profile in WORK2 machine

Likewise, it appears that the Capturers use the JMP machine to perform their operations:

Figure 85 - JMP machine user profiles

Interesting enough, while checking the folders content, we can find a note for the approver:

Figure 86 - Note for the approver

This note implies that their SWIFT bank web application credentials should be different from the Active

Directory ones, which means that their credentials might be saved inside the JMP machine.

Since the Active Directory password for this user is not relevant (and hashcat could not crack it), we can

just change it in the Active Directory Users and Computers snap-in (option Reset Password):

Figure 87 - Reset the a.holt user's password

After that, we can login in the JMP machine as the user, with the newly assigned password:

Figure 88 - Access to the JMP machine as a.holt

Accessing the web application in the browser, we can see that the credentials are stored in it:

Figure 89 – Saved browser credentials after login

And we are able to access the Dashboard as an Approver:

Figure 90 - Dashboard of the Approver

Since we manage to crack the c.young password, we can try to login to his workstation and see if manage

to find stored credentials as well:

Figure 91 – Access to WORK1 machine as c.young

Unfortunately, there are no stored credentials for the web application in the browser:

Figure 92 - No stored credentials

However, by trying the Active Directory Credentials in the application, we manage to login as a Capturer:

Figure 93 - Dashboard of the Capturer (C.Young)

Also, by looking in the c.young documents folder, we can find a note stating that the credentials of the

application were replicated from the Active Directory:

Figure 94 - Note for the capturer

With this, we managed to get access to an employee with Capturer role and an employee with Approver

role, to execute a transfer successfully.

10.1. Goal execution
Sometimes, in real engagement, being a Domain Admin is not enough, because you need to

demonstrate the risk and impact of compromising those assets.

Usually, it is a client’s responsibility to perform a Risk Assessment based on Vulnerability Assessments,

Penetration Tests and Red Team Engagements done through the entire year (depending on the cyber

security posture of the client). But in order to perform it correctly, the impact and severity of the findings

need to be documented and explained.

Although we do not have to identify every single vulnerability in this exercise, we need to show the

impact of our actions, by performing a fraudulent transfer, which requires both the Capturer and

Approver access.

We start by logging into the application with our provided test credentials:

Figure 95 – Log In with your account

As requested, we perform a new transaction of 10 000 000 dollars, using the provided SenderID and

ReceiverID:

Figure 96 – Transfer according to e-citizen parameters

As the transaction is requested successfully, we receive a PIN number in our provided email address:

Figure 97 – Check your email for the PIN

 Now, we should confirm the transaction using the PIN number received:

Figure 98 – Confirm your transaction with PIN number

Figure 99 – Transaction Confirmed

Now, accordingly to the implementation of the SWIFT backend, an employee with the capturer role

should authenticate to the SWIFT application, capture and forward the transaction:

Figure 100 – Forward the transaction

Figure 101 – Confirming the forward

Lastly, an employee with the Approver role should authenticate to the SWIFT application, reviewing the
transaction details and approve it. This action should be performed from a jump host:

Figure 102 – Approve the transaction

Figure 103 – Confirm the approval

And we have achieved full network compromise, while performing the goal execution and showing the

impact of the compromise:

Figure 104 - Full Network Compromise

NOTE: We are now able to obtain the following flags, by following the instructions in the e-citizen

platform:

● Flag 18, Access to SWIFT application as capturer

● Flag 19, Access to SWIFT application as approver

● Flag 20, Simulated fraudulent transfer made

11. Conclusions
I’ve managed to compromise the entire domain and achieve goal execution in the first four days of the

challenge. In order to keep this write-up simple, a lot of the failed enumeration and exploitation

processes were not described here.

Although I had to use some external tools in order to accomplish the compromise (SpoolSample and

BloodHound), I’ve managed to use mostly the tools provided in the challenge or Windows tools and

features.

This is, hands down, one of the best labs and challenges I’ve made in TryHackMe since I’ve registered

(August 2020). I’ve learned a lot, since there were a couple of attack venues that I never had the chance

of trying.

During the engagement there were other attack paths that I’ve identified but decided not to provide in

this write-up, especially since I didn’t test them or had to abandon them due to time constraints,

network issues or just because other paths sounded more achievable.

In the end, I’ve had a blast doing this engagement, and I hope that TryHackMe continues to release this

type of content, due to the learning and practicality that it provides.

11.1. Attack Path
1. Identified usernames through OSINT in the web server

2. Created a list of potential passwords based in the policies and base list provided

3. Identified a vulnerable service that allowed a brute force attack (SMTP)

3.1. Obtained 2 sets of credentials (laura.wood and mohammad.ahmed)

4. Used the exposed VPN server with the compromised credentials to get a foothold in the internal

network

4.1. Downloaded 2 .ovpn files (laura.wood and mohammad.ahmed)

5. Exploited a misconfigured schedule task in order to obtain local administration in the machine

(FULLSYNC)

6. Used a Kerberoast attack to compromise a service user with SPN (svcScanning)

7. Lateral movement to Server1 through RDP

8. Abuse of Unconstrained Delegation to compromise Domain Administrator

9. Lateral movement to CORPDC through RDP with Restricted Admin

10. Used a Golden Ticket attack to abuse Kerberos and obtain Enterprise Admin

11. Lateral Movement to ROOTDC through RDP

12. Creation of user to maintain persistence

1.1. Created user in ROOT and CORP domains

2. Lateral movement to BANKDC through RDP

3. Full compromise of the BANK domain and creation of user in BANK domain to maintain persistence

4. Compromise of the SWIFT users

5. Compromise of the SWIFT payment system

6. Goal Execution

